
Probability concepts explained:
Maximum likelihood estimation

Introduction
In this post I’ll explain what the maximum likelihood method for

parameter estimation is and go through a simple example to

demonstrate the method. Some of the content requires knowledge of

fundamental probability concepts such as the de=nition of joint

probability and independence of events. I’ve written a blog post with

these prerequisites so feel free to read this if you think you need a

refresher.
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What are parameters?
Often in machine learning we use a model to describe the process that

results in the data that are observed. For example, we may use a random

forest model to classify whether customers may cancel a subscription

from a service (known as churn modelling) or we may use a linear model

to predict the revenue that will be generated for a company depending

on how much they may spend on advertising (this would be an example

of linear regression). Each model contains its own set of parameters that

ultimately de=nes what the model looks like.

For a linear model we can write this as y = mx + c. In this example x

could represent the advertising spend and y might be the revenue

generated. m and c are parameters for this model. DiGerent values for

these parameters will give diGerent lines (see =gure below).

So parameters de=ne a blueprint for the model. It is only when speci=c

values are chosen for the parameters that we get an instantiation for the

model that describes a given phenomenon.

Three linear models with di<erent parameter values.
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Intuitive explanation of maximum
likelihood estimation
Maximum likelihood estimation is a method that determines values for

the parameters of a model. The parameter values are found such that

they maximise the likelihood that the process described by the model

produced the data that were actually observed.

The above de=nition may still sound a little cryptic so let’s go through an

example to help understand this.

Let’s suppose we have observed 10 data points from some process. For

example, each data point could represent the length of time in seconds

that it takes a student to answer a speci=c exam question. These 10 data

points are shown in the =gure below

We =rst have to decide which model we think best describes the process

of generating the data. This part is very important. At the very least, we

The 10 (hypothetical) data points that we have observed
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should have a good idea about which model to use. This usually comes

from having some domain expertise but we wont discuss this here.

For these data we’ll assume that the data generation process can be

adequately described by a Gaussian (normal) distribution. Visual

inspection of the =gure above suggests that a Gaussian distribution is

plausible because most of the 10 points are clustered in the middle with

few points scattered to the left and the right. (Making this sort of

decision on the Qy with only 10 data points is ill-advised but given that I

generated these data points we’ll go with it).

Recall that the Gaussian distribution has 2 parameters. The mean, μ, and

the standard deviation, σ. DiGerent values of these parameters result in

diGerent curves (just like with the straight lines above). We want to

know which curve was most likely responsible for creating the data points

that we observed? (See =gure below). Maximum likelihood estimation is

a method that will =nd the values of μ and σ that result in the curve that

best =ts the data.
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The true distribution from which the data were generated was f1 ~

N(10, 2.25), which is the blue curve in the =gure above.

Calculating the Maximum Likelihood
Estimates
Now that we have an intuitive understanding of what maximum

likelihood estimation is we can move on to learning how to calculate the

parameter values. The values that we =nd are called the maximum

likelihood estimates (MLE).

Again we’ll demonstrate this with an example. Suppose we have three

data points this time and we assume that they have been generated from

a process that is adequately described by a Gaussian distribution. These

points are 9, 9.5 and 11. How do we calculate the maximum likelihood

estimates of the parameter values of the Gaussian distribution μ and σ?

The 10 data points and possible Gaussian distributions from which the data were drawn. f1 is

normally distributed with mean 10 and variance 2.25 (variance is equal to the square of the standard

deviation), this is also denoted f1 ꔆ N (10, 2.25). f2 ꔆ N (10, 9), f3 ꔆ N (10, 0.25) and f4 ꔆ N (8, 2.25).

The goal of maximum likelihood is to Nnd the parameter values that give the distribution that

maximise the probability of observing the data.
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What we want to calculate is the total probability of observing all of the

data, i.e. the joint probability distribution of all observed data points. To

do this we would need to calculate some conditional probabilities, which

can get very diYcult. So it is here that we’ll make our =rst assumption.

The assumption is that each data point is generated independently of the

others. This assumption makes the maths much easier. If the events (i.e.

the process that generates the data) are independent, then the total

probability of observing all of data is the product of observing each data

point individually (i.e. the product of the marginal probabilities).

The probability density of observing a single data point x, that is

generated from a Gaussian distribution is given by:

The semi colon used in the notation P(x; μ, σ) is there to emphasise that

the symbols that appear after it are parameters of the probability

distribution. So it shouldn’t be confused with a conditional probability

(which is typically represented with a vertical line e.g. P(A| B)).

In our example the total (joint) probability density of observing the

three data points is given by:

We just have to =gure out the values of μ and σ that results in giving the

maximum value of the above expression.
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If you’ve covered calculus in your maths classes then you’ll probably be

aware that there is a technique that can help us =nd maxima (and

minima) of functions. It’s called diHerentiation. All we have to do is =nd

the derivative of the function, set the derivative function to zero and

then rearrange the equation to make the parameter of interest the

subject of the equation. And voilà, we’ll have our MLE values for our

parameters. I’ll go through these steps now but I’ll assume that the

reader knows how to perform diGerentiation on common functions. If

you would like a more detailed explanation then just let me know in the

comments.

The log likelihood

The above expression for the total probability is actually quite a pain to

diGerentiate, so it is almost always simpli=ed by taking the natural

logarithm of the expression. This is absolutely =ne because the natural

logarithm is a monotonically increasing function. This means that if the

value on the x-axis increases, the value on the y-axis also increases (see

=gure below). This is important because it ensures that the maximum

value of the log of the probability occurs at the same point as the original

probability function. Therefore we can work with the simpler log-

likelihood instead of the original likelihood.

Monotonic behaviour of the original function, y = x on the left and the (natural) logarithm function y

= ln(x). These functions are both monotonic because as you go from left to right on the x-axis the y

value always increases.
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Taking logs of the original expression gives us:

This expression can be simpli=ed again using the laws of logarithms to

obtain:

This expression can be diGerentiated to =nd the maximum. In this

example we’ll =nd the MLE of the mean, μ. To do this we take the partial

derivative of the function with respect to μ, giving

Example of a non-monotonic function because as you go from left to right on the graph the value of

f(x) goes up, then goes down and then goes back up again.
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Finally, setting the left hand side of the equation to zero and then

rearranging for μ gives:

And there we have our maximum likelihood estimate for μ. We can do

the same thing with σ too but I’ll leave that as an exercise for the keen

reader.

Concluding remarks

Can maximum likelihood estimation always be solved
in an exact manner?

No is the short answer. It’s more likely that in a real world scenario the

derivative of the log-likelihood function is still analytically intractable

(i.e. it’s way too hard/impossible to diGerentiate the function by hand).

Therefore, iterative methods like Expectation-Maximization algorithms

are used to =nd numerical solutions for the parameter estimates. The

overall idea is still the same though.

So why maximum likelihood and not maximum
probability?

Well this is just statisticians being pedantic (but for good reason). Most

people tend to use probability and likelihood interchangeably but
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statisticians and probability theorists distinguish between the two. The

reason for the confusion is best highlighted by looking at the equation.

These expressions are equal! So what does this mean? Let’s =rst de=ne

P(data; μ, σ)? It means “the probability density of observing the data with

model parameters μ and σ”. It’s worth noting that we can generalise this

to any number of parameters and any distribution.

On the other hand L(μ, σ; data) means “the likelihood of the parameters μ

and σ taking certain values given that we’ve observed a bunch of data.”

The equation above says that the probability density of the data given

the parameters is equal to the likelihood of the parameters given the

data. But despite these two things being equal, the likelihood and the

probability density are fundamentally asking diGerent questions — one is

asking about the data and the other is asking about the parameter

values. This is why the method is called maximum likelihood and not

maximum probability.

When is least squares minimisation the same as
maximum likelihood estimation?

Least squares minimisation is another common method for estimating

parameter values for a model in machine learning. It turns out that when

the model is assumed to be Gaussian as in the examples above, the MLE

estimates are equivalent to the least squares method. For a more in-

depth mathematical derivation check out these slides.

Intuitively we can interpret the connection between the two methods by

understanding their objectives. For least squares parameter estimation

we want to =nd the line that minimises the total squared distance

between the data points and the regression line (see the =gure below).

In maximum likelihood estimation we want to maximise the total

probability of the data. When a Gaussian distribution is assumed, the

https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1 6/15/19, 9D24 AM
Page 10 of 12



maximum probability is found when the data points get closer to the

mean value. Since the Gaussian distribution is symmetric, this is

equivalent to minimising the distance between the data points and the

mean value.

If there is anything that is unclear or I’ve made some mistakes in the

above feel free to leave a comment. In the next post I plan to cover

Bayesian inference and how it can be used for parameter estimation.

Thank you for reading.

Regression line showing data points with random Gaussian noise
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